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Abstract—In this paper, we revisit traditional checkpointing
and rollback recovery strategies, with a focus on silent data
corruption errors. Contrarily to fail-stop failures, such latent
errors cannot be detected immediately, and a mechanism to
detect them must be provided. We consider two models: (i)
errors are detected after some delays following a probability
distribution (typically, an Exponential distribution); (ii) errors
are detected through some verification mechanism. In both cases,
we compute the optimal period in order to minimize the waste,
i.e., the fraction of time where nodes do not perform useful
computations. In practice, only a fixed number of checkpoints
can be kept in memory, and the first model may lead to an
irrecoverable failure. In this case, we compute the minimum
period required for an acceptable risk. For the second model,
there is no risk of irrecoverable failure, owing to the verification
mechanism, but the corresponding overhead is included in
the waste. Finally, both models are instantiated using realistic
scenarios and application/architecture parameters.

Keywords—High-performance computing, checkpointing, silent
data corruption, verification, error recovery.

I. INTRODUCTION

For several decades, the High Performance Computing
(HPC) community has been aiming at increasing the com-
putational capabilities of parallel and distributed platforms,
in order to fulfill expectations arising from many fields of
research, such as chemistry, biology, medicine and aerospace.
The core problem of delivering more performance through ever
larger systems is reliability, because of the number of parallel
components. Even if each independent component is quite
reliable, the Mean Time Between Failures (MTBF) is expected
to drop drastically when considering an exascale system [1].
Failures become a normal part of application executions.

The de-facto general-purpose error recovery technique in
high performance computing is checkpoint and rollback recov-
ery. Such protocols employ checkpoints to periodically save
the state of a parallel application, so that when an error strikes
some process, the application can be restored into one of
its former states. There are several families of checkpointing
protocols. We assume in this work that each checkpoint forms
a consistent recovery line, i.e., when an error is detected, we
can rollback to the last checkpoint and resume execution, after
a downtime and a recovery time.
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Most studies assume instantaneous error detection, and
therefore apply to fail-stop failures, such as for instance
the crash of a resource. In this work, we revisit checkpoint
protocols in the context of latent errors, also called silent
data corruption. In HPC, it has been shown recently that such
errors are not unusual, and must also be accounted for [2].
The cause may be for instance soft efforts in L1 cache, or
double bit flips. The problem is that the detection of a latent
error is not immediate, because the error is identified only
when the corrupted data is activated. One must then account
for the detection interval required to detect the error in the
error recovery protocol. Indeed, if the last checkpoint saved
an already corrupted state, it may not be possible to recover
from the error. Hence the necessity to keep several checkpoints
so that one can rollback to the last correct state.

This work is motivated by a recent paper by Lu, Zheng and
Chien [3], who introduce a multiple checkpointing model to
compute the optimal checkpointing period with error detection
latency. More precisely, Lu, Zheng and Chien [3] deal with the
following problem: given errors whose inter arrival times X,
follow an Exponential probability distribution of parameter A,
and given error detection times X4 that follow an Exponential
probability distribution of parameter Ay, what is the optimal
checkpointing period Ty in order to minimize the total
execution time? The problem is illustrated on Figure 1: the
error is detected after a (random) time X , and one has to
rollback up to the last checkpoint that precedes the occurrence
of the error. Let & be the number of checkpoints that can
be simultaneously kept in memory. Lu, Zheng and Chien [3]
derive a formula for the optimal checkpointing period Top; in
the (simplified) case where k is unbounded (k = oc0), and they
propose some numerical simulations to explore the case where
k is a fixed constant.

The first major contribution of this paper is to correct the
formula of [3] when k is unbounded, and to provide an
analytical approach when k is a fixed constant. The latter
approach is a first-order approximation but applies to any
probability distribution of errors.

While it is very natural and interesting to consider the
latency of error detection, the model of [3] suffers from an
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Figure 1: Error and detection latency.
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important limitation: it is not clear how one can determine
when the error has indeed occurred, and hence to identify
the last valid checkpoint, unless some verification system
is enforced. Another major contribution of this paper is to
introduce a model coupling verification and checkpointing, and
to analytically determine the best balance between checkpoints
and verifications so as to optimize platform throughput.

The rest of the paper is organized as follows. First we revisit
the multiple checkpointing model of [3] in Section II; we
tackle both the case where all checkpoints are kept, and the
case with at most k checkpoints. In Section III, we define and
analyze a model coupling checkpoints and verifications. Then,
we evaluate the various models in Section IV, by instantiating
the models with realistic parameters derived from future
exascale platforms. Related work is discussed in Section V.
Finally, we conclude and discuss future research directions in
Section VL.

II. REVISITING THE MULTIPLE CHECKPOINTING MODEL

In this section, we revisit the approach of [3]. We show
that their analysis with unbounded memory is incorrect and
provide the exact solution (Section II-A). We also extend
their approach to deal with the case where a given (constant)
number of checkpoints can be simultaneously kept in memory
(Section II-B).

A. Unlimited checkpoint storage

Let C be the time needed for a checkpoint, R the time
for recovery, and D the downtime. Although R and C' are a
function of the size of the memory footprint of the process,
D is a constant that represents the unavoidable costs to rejuve-
nate a process after an error (e.g., stopping the failed process
and restoring a new one that will load the checkpoint image).
We assume that errors can take place during checkpoint and
recovery but not during downtime (otherwise, the downtime
could be considered part of the recovery).

Let pe = /\i be the mean time between errors. With no error
detection latency and no downtime, well-known formulas for
the optimal period (useful work plus checkpointing time that
minimizes the execution time) are Top = /2C1.+C (as given
by Young [4]) and Top =~ /2C(pe + R) + C (as given by
Daly [5]). These formulas are first-order approximations and
are valid only if C, R < p. (in which case they collapse).

With error detection latency, things are more complicated,
even with the assumption that one can track the source of the
error (and hence identify the last valid checkpoint). Indeed,
the amount of rollback will depend upon the sum X, + Xj.
For Exponential distributions of X, and X4, Lu, Zheng and
Chien [3] derive that Ty, =~ /2C (e + pa) +C, where p1qg =

A% is the mean of error detection times. However, although this

result may seem intuitive, it is wrong, and we prove that the
correct answer is Ty ~ /2C1, + C, even when accounting
for the downtime: this first-order approximation is the same
as Young’s formula. We give an intuitive explanation after the
proofs provided in Section II-A1. Then in Section II-A2, we
extend this result to arbitrary laws, but under the additional
constraint that pg + D + R < .

1) Exponential distributions: In this section, we assume
that X, and X, follow Exponential distributions of mean g,
and pg respectively.

Proposition 1. The expected time needed to successfully
execute a work of size w followed by its checkpoint is

E(T(w)) = e " (D + pe + pa) (X —1).

Proof: Let T(w) be the time needed for successfully
executing a work of duration w. There are two cases: (i) if
there is no error during execution and checkpointing, then the
time needed is exactly w + C (ii) if there is an error before
successfully completing the work and its checkpoint, then
some additional delays are incurred. These delays come from
three sources: the time spent computing by the processors
before the error occurs, the time spent before the error is
detected, and the time spent for downtime and recovery.
Regardless, once a successful recovery has been completed,
there still remain w units of work to execute. Thus, we can
write the following recursion:

E(T(w)) = e 2T (w + C)
+ (1 — G_Ac(w+c)) (E(T‘lost) + E(Xd)

FE(Tree) + E(T(w))) . (D)

Here, T},s: denotes the amount of time spent by the pro-
cessors before the first error, knowing that this error occurs
within the next w + C units of time. In other terms, it is the
time that is wasted because computation and checkpoint were
not both completed before the error occurred. The random
variable X, represents the time needed for error detection,
and its expectation is E(Xy) = pug = /\% The last variable
T'c. represents the amount of time needed by the system to
perform a recovery. Equation (1) simplifies to:

E(T(w)) = w+C+ (™) 1) (E(Tiost) + tta +E(Trec)).-

@
We have
o0
0
1 w+C N
= - TAee M %dx,
IP(X<w+C)/O Phee At
and ]P)(X <w+ C) =1— e_)‘C(w+C).
Integrating by parts, we derive that
1 w+C
E(T'lost) = (3)

Ao eret0) _1°



Next, to compute E(7;...), we have a recursive equation quite
similar to Equation (1) (remember that we assumed that no
error can take place during the downtime):

E(Trec) = 67>\ER(D + R)
+(1 — e B (E(Ripst) + E(Xg) + D + E(Tyee)).

Here, E(Ry,s:) is the expected amount of time lost to
executing the recovery before an error happens, knowing that
this error occurs within the next R units of time. Replacing
w + C by R in Equation (3), we obtain

1 R

e NE_1T°

The expression for E(7}...) simplifies to
E(Tree) = DeB 4 (er B — 1) (e + pa). 4)

Plugging the values of E(7T},s:) and E(T....) into Equation (2)
leads to the desired value. |

E(Rlost)

Proposition 2. The optimal strategy to execute a work of size
W is to divide it into n equal-size chunks, each followed by

a checkpoint, where n is equal either to max(1, |n*|) or to
[n*]. The value of n* is uniquely derived from y = ’\;L—ZV -1,

where L(y) = —e ¢~ (L, the Lambert function, defined
as ]L(:U)eL(I) = x). The optimal strategy does not depend on
the value of piq.

Proof: Using n chunks of size w; (with Y .  w; =
W), by linearity of the expectation, we have E(T'(W)) =
KT (et —1) where K = 8 (D + pe + p1q) is a
constant. By convexity, the sum is minimum when all the w;s
are equal (to ). Now, E(T'(W)) is a convex function of n,
hence it admits a unique minimum n* such that the derivative

is zero:
AW
-— =1
n*

e/\e(%‘l’c) (1 (5)

Lety = 2 1, we have ye¥ = —e~*<C~1 hence L(y) =
—e~?¢C~1 Then, since we need an integer number of chunks,
the optimal strategy is to split W into max(1, [n*|) or [n*]
same-size chunks, whichever leads to the smaller value. As
stated, the value of y, hence of n*, is independent of 1. MW

Proposition 3. A first-order approximation for the optimal
checkpointing period (that minimizes total execution time) is
Topr = /2C e +C. This value is identical to Young’s formula,
and does not depend on the value of pq.

Proof: We use Proposition 2 and Taylor expansions when
z=y+1= ’\;ZV is small: from ye¥ = —e=2eC=1 we derive
(z —1)e* = —e ?C. We have (z — 1)e* =~ % — 1, and
—e € x~ —1+ \.C, hence 22 ~ 2)\.C. The period is

W
Ton= — +C = +C~/20u +C.

z

Ae

|

An intuitive explanation of the result is the following: error

detection latency is paid for every error, and can be viewed as

an additional downtime, which has no impact on the optimal
period.

2) Arbitrary distributions: Here we extend the previous
result to arbitrary distribution laws for X, and X, (of mean
e and pg respectively):

Proposition 4. When C' < p. and pg+ D+ R < i, a first-
order approximation for the optimal checkpointing period is

Topt = /2Cpe + C.

Proof: Let T, be the base time of the application with-
out any overhead due to resilience techniques. First, assume a
fault-free execution of the application: every period of length
T, only Work =T — C units of work are executed, hence the
time 7§ for a fault-free execution is T = ﬁTbm. Now, let
Tiina denote the expectation of the execution time with errors
taken into account. In average, errors occur every . time-
units, and for each of them we lose F time-units, so there are

Lina errors during the execution. Hence we derive that

e

(6)
which we rewrite as

(1—WASTE)Tfinat = Thases

with WASTE =1 — (1 - i) (1 — g) . (D
He T

The waste is the fraction of time where nodes do not perform
useful computations. Minimizing execution time is equivalent
to minimizing the waste. In Equation (7), we identify the two
sources of overhead: (i) the term WASTEyx = %, which is
the waste due to checkpointing in a fault-free execution, by
construction of the algorithm; and (ii) the term WASTEg; =
£ which is the waste due to errors striking during execution.

With these notations, we have

WASTE = WASTEj + WASTE — WASTEg,j WASTEg.  (8)

There remains to determine the (expected) value of F. Assum-
ing at most one error per period, we lose F = % +ua+D+R
per error: % for the average work lost before the error occurs,
1q for detecting the error, and D+ R for downtime and recov-
ery. Note that the assumption is valid only if g+ D+ R < e
and T < p.. Plugging back this value into Equation (8), we
obtain

(1 — D+R+pqg D R e
WASTE(T) = + ( o) Mkl
2pte T He
&)
which is minimal for
Topt = V/20(pte — D — R — pg) = /2Cpe.  (10)

We point out that this approach based on the waste leads to
a different approximation formula for the optimal period, but
Topt = \/2C(u6 —D—R—pg) = 2Cu. ~ 2Cpu. + C
up to second-order terms, when p. is large in front of the
other parameters, including p4. For example, this approach
does not allow us to handle the case 4 = fi.; in such a case,
the optimal period is known only for Exponential distributions,
and is independent of j4, as proven by Proposition 2. |




To summarize, the exact value of the optimal period is
only known for Exponential distributions and is provided by
Proposition 2, while Young’s formula can be used as a first-
order approximation for any other distributions. Indeed, the
optimal period is a trade-off between the overhead due to
checkpointing (%) and the expected time lost per error (i
plus some constant). Up to second-order terms, the waste is
minimum when both factors are equal, which leads to Young’s
formula, and which remains valid regardless of error detection
latencies.

B. Saving only k checkpoints

Lu, Zheng and Chien [3] propose a set of simulations to
assess the overhead induced when keeping only the last &
checkpoints (because of storage limitations). In the following,
we derive an analytical approach to numerically solve the
problem. The main difficulty is that when error detection
latency is too large, it is impossible to recover from a valid
checkpoint, and one must resume the execution from scratch.
We consider this scenario as an irrecoverable failure, and
we aim at guaranteeing that the risk of irrecoverable failure
remains under a user-given threshold.

Assume that a job of total size W is partitioned into n
chunks. What is the risk of irrecoverable failure during the
execution of one chunk of size % followed by its checkpoint?
Let T = % + C' be the length of the period. Intuitively, the
longer the period, the smaller the probability that an error that
has just been detected took place more than k periods ago,
thereby leading to an irrecoverable failure because the last
valid checkpoint is not one of the £ most recent ones.

Formally, there is an irrecoverable failure if: (i) there is an
error detected during the period (probability Py, ), and (ii) the
sum of T,¢¢, the time elapsed since the last checkpoint, and of
X4, the error detection latency, exceeds kT (probability Pyy).
The value of Py = P(X, < T) is easy to compute from
the error distribution law. For instance with an Exponential
law, Pry = 1 — e?T. As for Py, we use an upper bound:
P = P(Tiost + Xa > kT) < P(T + Xy > kT) = P(X, >
(k — 1)T). The latter value is easy to compute from the
error distribution law. For instance with an Exponential law,
P = e **&=DT_Of course, if there is an error and the error
detection latency does not exceed k7" (probability (1-Py)), we
have to restart execution and face the same risk as before.
Therefore, the probability of irrecoverable failure Pjy.. can
be recursively evaluated as Piyec = Ppait (Prat + (1 — Prag) Pirrec )
hence Piyec = %. Now that we have computed Pjec,
the probability of irrecoverable failure for a single chunk,
we can compute the probability of irrecoverable failure for
n chunks as Pygx = 1 — (1 — Pigec)™. In full rigor, these
expressions for Pie. and Py are valid only for Exponential
distributions, because of the memoryless property, but they are
a good approximation for arbitrary laws. Given a prescribed
risk threshold ¢, solving numerically the equation Py < €
leads to a lower bound T,i, on T'. Let Ty, be the optimal
period given in Theorem 3 for an unbounded number of
saved checkpoints. The best strategy is then to use the period

max(Tiin, Topt) to minimize the waste while enforcing a risk
below threshold.

In case of irrecoverable failure, we have to resume execution
from the very beginning. The number of re-executions due to
consecutive irrecoverable failures follows a geometric law of
parameter 1 — Py, so that the expected number of executions
until success is %m. We refer to Section IV-A for an
example of how to instantiate this model to compute the best
period with a fixed number of checkpoints, under a prescribed
risk threshold.

III. COUPLING VERIFICATION AND CHECKPOINTING

In this section, we move to a more realistic model where
silent errors are detected only when some verification mecha-
nism (checksum, error correcting code, coherence tests, etc.)
is executed. Our approach is agnostic of the nature of this
verification mechanism. We aim at solving the following
optimization problem: given the cost of checkpointing C,
downtime D, recovery R, and verification V, what is the
optimal strategy to minimize the expected waste as a function
of the mean time between errors p.? Depending upon the
relative costs of checkpointing and verifying, we may have
more checkpoints than verifications, or the other way round.
In both cases, we target a periodic pattern that repeats over
time.

Consider first the scenario where the cost of a checkpoint
is smaller than the cost of a verification: then the periodic
pattern will include k& checkpoints and 1 verification, where
k is some parameter to determine. Figure 2(a) provides an
illustration with & = 5. We assume that the verification is
directly followed by the last checkpoint in the pattern, so as to
save results just after they have been verified (and before they
get corrupted). In this scenario, the objective is to determine
the value of k that leads to the minimum platform waste. This
problem is addressed in Section III-A.

Because our approach is agnostic of the cost of the ver-
ification, we also envision scenarios where the cost of a
checkpoint is higher than the cost of a verification. In such
a framework, the periodic pattern will include & verifications
and 1 checkpoint, where k is some parameter to determine. See
Figure 2(b) for an illustration with k£ = 5. Again, the objective
is to determine the value of k that leads to the minimum
platform waste. This problem is addressed in Section III-B.

We point out that combining verification and checkpointing
guarantees that no irrecoverable failure will kill the appli-
cation: the last checkpoint of any period pattern is always
correct, because a verification always takes place right before
this checkpoint is taken. If that verification reveals an error, we
roll back until reaching a correct verification point, maybe up
to the end of the previous pattern, but never further back, and
re-execute the work. The amount of roll-back and re-execution
depends upon the shape of the pattern, and we show how to
compute it in Sections III-A and III-B below.

A. With k checkpoints and 1 verification

We use the same approach as in the proof of Proposition 4
and compute a first-order approximation of the waste (see
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Figure 2: Periodic pattern.

Equations (7) and (8)). We compute the two sources of
overhead: (i) WASTEg, the waste incurred in a fault-free
execution, by construction of the algorithm, and (ii)) WASTEg;,
the waste due to errors striking during execution.

Let S = kw+ kC' +V be the length of the periodic pattern.
We easily derive that WASTEy = '“Cg V. As for WASTEg, we
still have WASTEg,; = % However, in this context,
the time lost because of the error depends upon the location of
this error within the periodic pattern, so we compute averaged
values as follows. Recall (see Figure 2(a)) that checkpoint £ is
the one preceded by a verification. Here is the analysis when
an error is detected during the verification that takes place in
the pattern:

« If the error took place in the (last) segment k: we recover
from checkpoint k—1, and verify it; we get a correct result
because the error took place later on. Then we re-execute
the last piece of work and redo the verification. The time
that has been lost is Tjpsi(k) = R+ V +w + V. (We
assume that there is at most one error per pattern.)

o If the error took place in segment 4, 2 < ¢ < k — 1:
we recover from checkpoint k — 1, verify it, get a wrong
result; we iterate, going back up to checkpoint i—1, verify
it, and get a correct result because the error took place
later on. Then we re-execute k — i+ 1 pieces of work and
k — i checkpoints, together with the last verification. We
get Tiost(1) = (k—i+1)(R+V+w)+(k—9)C+ V.

o If the error took place in (first) segment 1: this is almost
the same as above, except that the first recovery at the
beginning of the pattern need not be verified, because
the verification was made just before the corresponding
checkpoint at the end of the previous pattern. We have the
same formula with ¢ = 1 but with one fewer verification:
Tiost(1) =k(R+w)+ (k—1)(C+V)+ V.

Therefore, the formula for WASTEy,; writes

D + % Zf:l Tlost(i)
He

WASTEf,; = ; (11)

and (after some manipulation using a computer algebra sys-
tem) the formula simplifies to

1
WASTEg = m((R+V)k2+(2D+R+2V+S—20)k:+S—3V)
‘ (12)

Using WASTEg = % and Equation (8), we compute the
total waste and derive that WASTE = aS + b + g, where a, b,
and ¢ are some constants. The optimal value of S is S,,; =
\/g , provided that this value is at least kC + V. We point out
that this formula only is a first-order approximation. We have
assumed a single error per pattern. We have also assumed that
errors did not occur during checkpoints following verifications.
Now, once we have found WASTE(S,,,;), the value of the waste
obtained for the optimal period S,,:, we can minimize this
quantity as a function of k, and numerically derive the optimal
value K,y that provides the best value (and hence the best
platform usage).

Due to lack of space, computational details are available
in [6], which is a Maple sheet that we have to instantiate
the model. This Maple sheet is publicly available for users
to experiment with their own parameters. We provide two
example scenarios to illustrate the model in Section IV-C.

Finally, note that in order to minimize the waste, one could
do a binary search in order to find the last checkpoint before
the fault. Then we can upper-bound T}, () by (k—i+1)w+
log(k)(R+V) + (k —4)C +V, and Equation (12) becomes
WASTEgi1 = 57,~ (R +V)2klog(k) + (2D + R+2V +8 —
20k +S —3V).

B. With k verifications and 1 checkpoint

We use a similar line of reasoning for this scenario and
compute a first-order approximation of the waste for the case
with & verifications and 1 checkpoint per pattern. The length
of the periodic pattern is now S = kw + kV + C. As before,
for 1 < ¢ <k, let segment i denote the period of work before
verification ¢, and assume (see Figure 2(b)) that verification &k
is preceded by a checkpoint. The analysis is somewhat simpler
here.

If an error takes place in segment ¢, 1 < 7 < k, we
detect the error during verification ¢, we recover from the last
checkpoint, and redo the first ¢ segments and verifications:
therefore T},5t(1) = R+4(V 4+ w). The formula for WASTE;
is the same as in Equation (11) and (after some manipulation)
we derive

1 k+1
WASTEg; = L (D + R+ Frd
He

o (8- C)> . (13)

Using WASTEg = % and Equation (8), we proceed just
as in Section III-A to compute the optimal value S,,: of



the periodic pattern, and then the optimal value £, that
minimizes the waste. Details are available within the Maple
sheet [6].

IV. EVALUATION

This section provides some examples for instantiating the
various models. We aimed at choosing realistic parameters in
the context of future exascale platforms, but we had to restrict
to a limited set of scenarios, which do not intend to cover the
whole spectrum of possible parameters. The Maple sheet [6]
is available to explore other scenarios.

A. Best period with k checkpoints under a given risk threshold

We first evaluate Py, the risk of irrecoverable failure,
as defined in Section II-B. Figures 3 and 4 present, for
different scenarios, the probability Py as a function of the
checkpointing period 7" on the left. On the right, the figures
present the corresponding waste with k checkpoints and in the
absence of irrecoverable failures. This waste can be computed
following the same reasoning as in Equation (9). For each
figure, the left diagram represents the risk implied by a given
period T', showing the value T; of the optimal checkpoint
interval (optimal with respect to waste minimization and in
the absence of irrecoverable failures, see Equation (10)) as a
blue vertical line. The right diagram on the figure represents
the corresponding waste, highlighting the trade-off between
an increased irrecoverable-failure-free waste and a reduced
risk. As stated in Section II-B, it does not make sense to
select a value for T' lower than Ty, since the waste would be
increased, for an increased risk.

Figure 3 considers a machine consisting of 105 components,
and a component MTBF of 100 years. This component MTBF
corresponds to the optimistic assumption on the reliability of
computers made in the literature [7], [1]. The platform MTBF
pe is thus 100 x 365 x 24/100,000 ~ 8.76 hours. The times
to checkpoint and recover (10 min) correspond to reasonable
mean values for systems at this size [8], [9]. At this scale,
process rejuvenation is small, and we set the downtime to Os.
For these average values to have a meaning, we consider a
run that is long enough (10 days of work), and in order to
illustrate the trade-off, we take a rather low (but reasonable)
value k£ = 3 of intervals, and a mean time error detection fi4
significantly smaller (30 times) than the MTBF g, itself.

With these parameters, 15, is around 100 minutes, and the
risk of irrecoverable failure at this checkpoint interval can be
evaluated at 1/2617 ~ 38 - 1075, inducing an irrecoverable-
failure-free waste of 23.45%. To reduce the risk to 1074,
a Thin of 8000 seconds is sufficient, increasing the waste
by only 0.6%. In this case, the benefit of fixing the period
to max(Top, Tmin) is obvious. Naturally, keeping a bigger
amount of checkpoints (increasing k) would also reduce the
risk, at constant waste, if memory can be afforded.

We also consider in Figure 4 a more optimistic scenario
where the checkpointing technology and availability of re-
sources is increased by a factor 10: the time to checkpoint,
recover, and allocate new computing resources is divided by
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Figure 3: Risk of irrecoverable failure as a function of the
checkpointing period, and corresponding waste. (k = 3, \c =

5
l%y,)\d = 30\e,w = 10d,C' = R = 600s, and D = 0s.)

10 compared to the previous scenario. Other parameters are
kept similar. One can observe that Tiy is largely reduced
(down to less than 35 minutes between checkpoints), as well
as the optimal irrecoverable-failure-free waste (9.55%). This
is unsurprising, and mostly due to the reduction of failure-
free waste implied by the reduction of checkpointing time.
But because the period between checkpoints becomes smaller,
while the latency to detect an error is unchanged (uq is still
30 times smaller than (), the risk that an error happens at the
interval ¢ but is detected after interval 7+ k is increased. Thus,
the risk climbs to 1/2, an unacceptable value. To reduce the
risk to 10™¢ as previously, it becomes necessary to consider a
Tmin of 6650 seconds, which implies an irrecoverable-failure-
free waste of 15%, significantly higher than the optimal one,
which is below 10%, but still much lower than the 24% when
checkpoint and availability costs are 10 times higher.

B. Periodic pattern with k verifications and 1 checkpoint

We now focus on the waste induced by the different ways
of coupling periodic verification and checkpointing. We first
consider the case of a periodic pattern with more verifications
than checkpoints: every k verifications of the current state of
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Figure 4: Risk of irrecoverable failure as a function of the
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the application, a checkpoint is taken. The duration of the work
interval S, between two verifications in this case, is optimized
to minimize the waste. We consider two scenarios. For each
scenario, we represent two diagrams: the left diagram shows
the waste as a function of k for a given verification cost V,
and the right diagram shows the waste as a function of k£ and
V using a 3D surface representation.

In the first scenario, we consider the same setup as above in
Section IV-A. The waste is computed in its general form, so we
do not need to define the duration of the work. As represented
in Figure 5, for a given verification cost, the waste can be
optimized by making more than one verifications. When &k >
1, there are intermediate verifications that can enable to detect
an error before a periodic pattern (of length S) is completed,
hence, that can reduce the time lost due to an error. However,
introducing too many verifications induces an overhead that
eventually dominates the waste. The 3D surface shows that
the waste reduction is significant when increasing the number
of verifications, until the optimal number is reached. Then, the
waste starts to increase again slowly. Intuitively, the lower the
cost for V, the higher the optimal value for k.

When considering the second scenario (Figure 6), with
an improved checkpointing and availability setup, the same
conclusions can be reached, with an absolute value of the
waste greatly diminished. Since forced verifications allow to
detect the occurrence of errors at a controllable rate (depending
on S and k), the risk of non-recoverable errors is nonexistent
in this case, and the waste can be greatly diminished, with
very few checkpoints taken and kept during the execution.

C. Periodic pattern with k checkpoints and 1 verification

The last set of experiments considers the opposite case
of periodic patterns: checkpoints are taken more often than
verifications. Every k£ checkpoints, a verification of the data
consistency is done. Intuitively, this could be useful if the
cost of verification is large compared to the cost of check-
pointing itself. In that case, when rolling back after an error is
discovered, each checkpoint that was not validated before is
validated at rollback time, potentially invalidating up to k — 1
checkpoints.

Because this pattern has potential only when the cost of
checkpoint is much lower than the cost of verification, we con-
sidered the case of a greatly improved checkpoint / availability
setup: the checkpoint and recovery times are only 6 seconds
in Figure 7. One can observe that in this extreme case, it can
still make sense to consider multiple checkpoints between two
verifications (when V' = 100 seconds, a verification is done
only every 3 checkpoints optimally); however the 3D surface
demonstrates that the waste is still dominated by the cost of
the verification, and little improvement can be achieved by
taking the optimal value for k. The cost of verification must
be incurred when rolling back, and this shows on the overall
performance if the verification is costly.

This is illustrated even more clearly with Figure 8, where
the checkpoint costs and machine availability are set to the
second scenario of Sections IV-A and IV-B. As soon as the
checkpoint cost is not negligible compared to the verification
cost (only 5 times smaller in this case), it is more efficient
to validate every other checkpoint than to validate only after
k > 2 checkpoints. The 3D surface shows that this holds true
for rather large values of V.

All the rollback / recovery techniques that we have evaluated
above, using various parameters for the different costs, and
stressing the different approaches to their limits, expose a
waste that remains, in the vast majority of the cases, largely be-
low 66%. This is noticeable, because the traditional hardware
based technique, which relies on triple modular redundancy
and voting [10], mechanically presents a waste that is at
least equal to 66% (two-thirds of resources are wasted, and
neglecting the cost of voting).

V. RELATED WORK

As already mentioned, this work is motivated by the recent
paper by Lu, Zheng and Chien [3], who introduce a multiple
checkpointing model to compute the optimal checkpointing pe-
riod with error detection latency. We start with a brief overview
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of traditional checkpointing approaches before discussing error
detection and recovery mechanisms.

A. Checkpointing

Traditional (coordinated) checkpointing has been studied for
many years. The major appeal of the coordinated approach is
its simplicity, because a parallel job using n processors of
individual MTBF M;,,4 can be viewed as a single processor
job with MTBF p % Given the value of p, an
approximation of the optimal checkpointing period can be
computed as a function of the key parameters (downtime D,
checkpoint time C, and recovery time R). The first estimate
had been given by Young [4] and later refined by Daly [5].
Both use a first-order approximation for Exponential failure
distributions; their derivation is similar to the approach in
Equations (6) and (7). More accurate formulas for Weibull
failure distributions are provided in [11], [12], [13]. The
optimal checkpointing period is known only for Exponential
failure distributions [8]. Dynamic programming heuristics for
arbitrary distributions are proposed in [14], [15], [8].

The literature proposes different works [16], [17], [18], [19],
[20] on the modeling of coordinated checkpointing protocols.
In particular, [17] and [16] focus on the usage of available
resources: some may be kept as backup in order to replace
the down ones, and others may be even shutdown in order to
decrease the failure risk or to prevent storage consumption by
saving fewer checkpoint snapshots.

The major drawback of coordinated checkpointing protocols
is their lack of scalability at extreme-scale. These protocols
will lead to I/O congestion when too many processes are
checkpointing at the same time. Even worse, transferring the
whole memory footprint of an HPC application onto stable
storage may well take so much time that a failure is likely to
take place during the transfer! A few papers [20], [21] propose
a scalability study to assess the impact of a small MTBF (i.e.,
of a large number of processors). The mere conclusion is that
checkpoint time should be dramatically reduced for platform
waste to become acceptable, which motivated the instantiation

10y )

10°

of optimistic scenarios in Section IV.

All the above approaches maintain a single checkpoint. If
the checkpoint file includes errors, the application faces an
irrecoverable failure and must restart from scratch. This is be-
cause error detection latency is ignored in traditional rollback
and recovery schemes. These schemes assume instantaneous
error detection (therefore mainly targeting fail-stop failures)
and are unable to accommodate silent errors.

B. Error detection

Considerable efforts have been directed at error-checking
to reveal latent errors. Most techniques combine redundancy
at various levels, together with a variety of verification
mechanisms. The oldest and most drastic approach is at
the hardware level, where all computations are executed in
triplicate, and majority voting is enforced in case of different
results [10]. Error detection approaches include memory scrub-
bing [22], fault-tolerant algorithms [23], [24], [25], ABFT
techniques [26], [27] and critical MPI message validation [28].
We refer to Lu, Zheng and Chien [3] for a comprehensive
list of techniques and references. As already mentioned, our
work is agnostic of the underlying error-detection technique
and takes the cost of verification as an input parameter to the
model (see Section III).

VI. CONCLUSION

In this paper, we revisit traditional checkpointing and roll-
back recovery strategies. Rather than considering fail-stop
failures, we focus on silent data corruption errors. Such latent
errors cannot be neglected anymore in High Performance
Computing, in particular in sensitive and high precision simu-
lations. The core difference with fail-stop failures is that error
detection is not immediate.

We discuss and analyze two models. In the first model,
errors are detected after some delay following a probability
distribution (typically, an Exponential distribution). We com-
pute the optimal checkpointing period in order to minimize the
waste when all checkpoints can be kept in memory, and we



show that this period does not depend on the distribution of
detection times. In practice, only a few checkpoints can be kept
in memory, and hence it may happen that an error was detected
after the last correct checkpoint was removed from storage. We
derive a minimum value of the period to guarantee, within a
risk threshold, that at least one valid checkpoint remains when
a latent error is detected.

A more realistic model assumes that errors are detected
through some verification mechanism. Periodically, one checks
whether the current status is meaningful or not, and then
eventually detects a latent error. We discuss both the case
where the periodic pattern includes k checkpoints for one
verification (large cost of verification), and the opposite case
with k verifications for one checkpoint (inexpensive cost for
verification). We express a formula for the waste in both cases,
and, from these formulas, we derive the optimal period.

The various models are instantiated with realistic parame-
ters, and the evaluation results clearly corroborate the theo-
retical analysis. For the first model, with detection times, the
tradeoff between waste and risk of irrecoverable error clearly
appears, hence showing that a period larger than the one
minimizing the irrecoverable-failure-free waste should often
be chosen to achieve an acceptable risk. The advantage of
the second model is that there are no irrecoverable failures
(within each period, there is a verification followed by a
checkpoint, hence ensuring a valid checkpoint). We compute
the optimal pattern of checkpoints and verifications per period,
as a function of their respective cost, to minimize the waste.
The pattern with more checkpoints than verification turns out
to be usable only when the cost of checkpoint is much lower
than the cost of verification, and the conclusion is that it is
often more efficient to verify the result every other checkpoint.

Overall, we provide a thorough analysis of checkpointing
models for latent errors, both analyzing the models analyti-
cally, and evaluating them through different scenarios. A future
research direction would be to study more general scenarios
of multiple checkpointing, for instance by keeping not the
consecutive k last checkpoints in the first model, but rather
some older checkpoints to decrease the risk. In the second
model, more verification/checkpoint combinations could be
studied, while we focused on cases with an integer number
of checkpoints per verification (or the converse).
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