
On the Combination of
Silent Error Detection and Checkpointing

Regular paper

Guillaume Aupy1,3, Anne Benoit1,3, Thomas Hérault2, Yves Robert1,3,4,

Frédéric Vivien2,3, and Dounia Zaidouni2,3

1École Normale Supérieure de Lyon, France 2INRIA, France
3LIP laboratory - CNRS, ENS Lyon, INRIA, UCBL, and Université de Lyon, France

4University of Tennessee Knoxville, USA

Abstract—In this paper, we revisit traditional checkpointing
and rollback recovery strategies, with a focus on silent data
corruption errors. Contrarily to fail-stop failures, such latent
errors cannot be detected immediately, and a mechanism to
detect them must be provided. We consider two models: (i)
errors are detected after some delays following a probability
distribution (typically, an Exponential distribution); (ii) errors
are detected through some verification mechanism. In both cases,
we compute the optimal period in order to minimize the waste,
i.e., the fraction of time where nodes do not perform useful
computations. In practice, only a fixed number of checkpoints
can be kept in memory, and the first model may lead to an
irrecoverable failure. In this case, we compute the minimum
period required for an acceptable risk. For the second model,
there is no risk of irrecoverable failure, owing to the verification
mechanism, but the corresponding overhead is included in
the waste. Finally, both models are instantiated using realistic
scenarios and application/architecture parameters.

Keywords–High-performance computing, checkpointing, silent
data corruption, verification, error recovery.

I. INTRODUCTION

For several decades, the High Performance Computing

(HPC) community has been aiming at increasing the com-

putational capabilities of parallel and distributed platforms,

in order to fulfill expectations arising from many fields of

research, such as chemistry, biology, medicine and aerospace.

The core problem of delivering more performance through ever

larger systems is reliability, because of the number of parallel

components. Even if each independent component is quite

reliable, the Mean Time Between Failures (MTBF) is expected

to drop drastically when considering an exascale system [1].

Failures become a normal part of application executions.

The de-facto general-purpose error recovery technique in

high performance computing is checkpoint and rollback recov-

ery. Such protocols employ checkpoints to periodically save

the state of a parallel application, so that when an error strikes

some process, the application can be restored into one of

its former states. There are several families of checkpointing

protocols. We assume in this work that each checkpoint forms

a consistent recovery line, i.e., when an error is detected, we

can rollback to the last checkpoint and resume execution, after

a downtime and a recovery time.

Most studies assume instantaneous error detection, and

therefore apply to fail-stop failures, such as for instance

the crash of a resource. In this work, we revisit checkpoint

protocols in the context of latent errors, also called silent

data corruption. In HPC, it has been shown recently that such

errors are not unusual, and must also be accounted for [2].

The cause may be for instance soft efforts in L1 cache, or

double bit flips. The problem is that the detection of a latent

error is not immediate, because the error is identified only

when the corrupted data is activated. One must then account

for the detection interval required to detect the error in the

error recovery protocol. Indeed, if the last checkpoint saved

an already corrupted state, it may not be possible to recover

from the error. Hence the necessity to keep several checkpoints

so that one can rollback to the last correct state.

This work is motivated by a recent paper by Lu, Zheng and

Chien [3], who introduce a multiple checkpointing model to

compute the optimal checkpointing period with error detection

latency. More precisely, Lu, Zheng and Chien [3] deal with the

following problem: given errors whose inter arrival times Xe

follow an Exponential probability distribution of parameter λe,

and given error detection times Xd that follow an Exponential

probability distribution of parameter λd, what is the optimal

checkpointing period Topt in order to minimize the total

execution time? The problem is illustrated on Figure 1: the

error is detected after a (random) time Xd, and one has to

rollback up to the last checkpoint that precedes the occurrence

of the error. Let k be the number of checkpoints that can

be simultaneously kept in memory. Lu, Zheng and Chien [3]

derive a formula for the optimal checkpointing period Topt in

the (simplified) case where k is unbounded (k =∞), and they

propose some numerical simulations to explore the case where

k is a fixed constant.

The first major contribution of this paper is to correct the

formula of [3] when k is unbounded, and to provide an

analytical approach when k is a fixed constant. The latter

approach is a first-order approximation but applies to any

probability distribution of errors.

While it is very natural and interesting to consider the

latency of error detection, the model of [3] suffers from an

2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing

978-0-7695-5130-2/13 $26.00 © 2013 IEEE

DOI 10.1109/PRDC.2013.10

11

2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing

978-0-7695-5130-2/13 $26.00 © 2013 IEEE

DOI 10.1109/PRDC.2013.10

11

2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing

978-0-7695-5130-2/13 $26.00 © 2013 IEEE

DOI 10.1109/PRDC.2013.10

11

2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing

978-0-7695-5130-2/13 $26.00 © 2013 IEEE

DOI 10.1109/PRDC.2013.10

11

2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing

978-0-7695-5130-2/13 $31.00 © 2013 IEEE

DOI 10.1109/PRDC.2013.10

11

TimeXe Xd

Error Detection

Figure 1: Error and detection latency.

important limitation: it is not clear how one can determine

when the error has indeed occurred, and hence to identify

the last valid checkpoint, unless some verification system

is enforced. Another major contribution of this paper is to

introduce a model coupling verification and checkpointing, and

to analytically determine the best balance between checkpoints

and verifications so as to optimize platform throughput.

The rest of the paper is organized as follows. First we revisit

the multiple checkpointing model of [3] in Section II; we

tackle both the case where all checkpoints are kept, and the

case with at most k checkpoints. In Section III, we define and

analyze a model coupling checkpoints and verifications. Then,

we evaluate the various models in Section IV, by instantiating

the models with realistic parameters derived from future

exascale platforms. Related work is discussed in Section V.

Finally, we conclude and discuss future research directions in

Section VI.

II. REVISITING THE MULTIPLE CHECKPOINTING MODEL

In this section, we revisit the approach of [3]. We show

that their analysis with unbounded memory is incorrect and

provide the exact solution (Section II-A). We also extend

their approach to deal with the case where a given (constant)

number of checkpoints can be simultaneously kept in memory

(Section II-B).

A. Unlimited checkpoint storage

Let C be the time needed for a checkpoint, R the time

for recovery, and D the downtime. Although R and C are a

function of the size of the memory footprint of the process,

D is a constant that represents the unavoidable costs to rejuve-

nate a process after an error (e.g., stopping the failed process

and restoring a new one that will load the checkpoint image).

We assume that errors can take place during checkpoint and

recovery but not during downtime (otherwise, the downtime

could be considered part of the recovery).

Let μe =
1
λe

be the mean time between errors. With no error

detection latency and no downtime, well-known formulas for

the optimal period (useful work plus checkpointing time that

minimizes the execution time) are Topt ≈
√
2Cμe+C (as given

by Young [4]) and Topt ≈
√
2C(μe +R) + C (as given by

Daly [5]). These formulas are first-order approximations and

are valid only if C,R� μe (in which case they collapse).

With error detection latency, things are more complicated,

even with the assumption that one can track the source of the

error (and hence identify the last valid checkpoint). Indeed,

the amount of rollback will depend upon the sum Xe +Xd.

For Exponential distributions of Xe and Xd, Lu, Zheng and

Chien [3] derive that Topt ≈
√
2C(μe + μd)+C, where μd =

1
λd

is the mean of error detection times. However, although this

result may seem intuitive, it is wrong, and we prove that the

correct answer is Topt ≈
√
2Cμe + C, even when accounting

for the downtime: this first-order approximation is the same

as Young’s formula. We give an intuitive explanation after the

proofs provided in Section II-A1. Then in Section II-A2, we

extend this result to arbitrary laws, but under the additional

constraint that μd +D +R� μe.

1) Exponential distributions: In this section, we assume

that Xe and Xd follow Exponential distributions of mean μe

and μd respectively.

Proposition 1. The expected time needed to successfully
execute a work of size w followed by its checkpoint is

E(T (w)) = eλeR (D + μe + μd) (e
λe(w+C) − 1).

Proof: Let T (w) be the time needed for successfully

executing a work of duration w. There are two cases: (i) if

there is no error during execution and checkpointing, then the

time needed is exactly w + C; (ii) if there is an error before

successfully completing the work and its checkpoint, then

some additional delays are incurred. These delays come from

three sources: the time spent computing by the processors

before the error occurs, the time spent before the error is

detected, and the time spent for downtime and recovery.

Regardless, once a successful recovery has been completed,

there still remain w units of work to execute. Thus, we can

write the following recursion:

E(T (w)) = e−λe(w+C)(w + C)

+ (1− e−λe(w+C)) (E(Tlost) + E(Xd)

+E(Trec) + E(T (w))) . (1)

Here, Tlost denotes the amount of time spent by the pro-

cessors before the first error, knowing that this error occurs

within the next w + C units of time. In other terms, it is the

time that is wasted because computation and checkpoint were

not both completed before the error occurred. The random

variable Xd represents the time needed for error detection,

and its expectation is E(Xd) = μd = 1
λd

. The last variable

Trec represents the amount of time needed by the system to

perform a recovery. Equation (1) simplifies to:

E(T (w)) = w+C+(eλe(w+C)−1)(E(Tlost)+μd+E(Trec)).
(2)

We have

E(Tlost) =

∫ ∞

0

xP(X = x|X < w + C)dx

=
1

P(X < w + C)

∫ w+C

0

xλee
−λexdx,

and P(X < w + C) = 1− e−λe(w+C).

Integrating by parts, we derive that

E(Tlost) =
1

λe
− w + C

eλe(w+C) − 1
. (3)

1212121212

Next, to compute E(Trec), we have a recursive equation quite

similar to Equation (1) (remember that we assumed that no

error can take place during the downtime):

E(Trec) = e−λeR(D +R)

+(1− e−λeR)(E(Rlost) + E(Xd) +D + E(Trec)).

Here, E(Rlost) is the expected amount of time lost to

executing the recovery before an error happens, knowing that

this error occurs within the next R units of time. Replacing

w + C by R in Equation (3), we obtain

E(Rlost) =
1

λe
− R

eλeR − 1
.

The expression for E(Trec) simplifies to

E(Trec) = DeλeR + (eλeR − 1)(μe + μd). (4)

Plugging the values of E(Tlost) and E(Trec) into Equation (2)

leads to the desired value.

Proposition 2. The optimal strategy to execute a work of size
W is to divide it into n equal-size chunks, each followed by
a checkpoint, where n is equal either to max(1, �n∗�) or to
�n∗	. The value of n∗ is uniquely derived from y = λeW

n∗ − 1,
where L(y) = −e−λeC−1 (L, the Lambert function, defined
as L(x)eL(x) = x). The optimal strategy does not depend on
the value of μd.

Proof: Using n chunks of size wi (with
∑n

i=1 wi =
W), by linearity of the expectation, we have E(T (W)) =
K

∑n
i=1(e

λe(wi+C)−1) where K = eλeR (D + μe + μd) is a

constant. By convexity, the sum is minimum when all the wis

are equal (to W
n). Now, E(T (W)) is a convex function of n,

hence it admits a unique minimum n∗ such that the derivative

is zero:

eλe(
W
n∗ +C)

(
1− λeW

n∗

)
= 1. (5)

Let y = λeW
n∗ −1, we have yey = −e−λeC−1, hence L(y) =

−e−λeC−1. Then, since we need an integer number of chunks,

the optimal strategy is to split W into max(1, �n∗�) or �n∗	
same-size chunks, whichever leads to the smaller value. As

stated, the value of y, hence of n∗, is independent of μd.

Proposition 3. A first-order approximation for the optimal
checkpointing period (that minimizes total execution time) is
Topt ≈

√
2Cμe+C. This value is identical to Young’s formula,

and does not depend on the value of μd.

Proof: We use Proposition 2 and Taylor expansions when

z = y+1 = λeW
n∗ is small: from yey = −e−λeC−1, we derive

(z − 1)ez = −e−λeC . We have (z − 1)ez ≈ z2

2 − 1, and

−e−λeC ≈ −1 + λeC, hence z2 ≈ 2λeC. The period is

Topt =
W

n∗
+ C =

z

λe
+ C ≈

√
2Cμe + C.

An intuitive explanation of the result is the following: error

detection latency is paid for every error, and can be viewed as

an additional downtime, which has no impact on the optimal

period.

2) Arbitrary distributions: Here we extend the previous

result to arbitrary distribution laws for Xe and Xd (of mean

μe and μd respectively):

Proposition 4. When C � μe and μd+D+R� μe, a first-
order approximation for the optimal checkpointing period is
Topt ≈

√
2Cμe + C.

Proof: Let Tbase be the base time of the application with-

out any overhead due to resilience techniques. First, assume a

fault-free execution of the application: every period of length

T , only Work = T −C units of work are executed, hence the

time Tff for a fault-free execution is Tff =
T

Work Tbase. Now, let

Tfinal denote the expectation of the execution time with errors

taken into account. In average, errors occur every μe time-

units, and for each of them we lose F time-units, so there are
Tfinal

μe
errors during the execution. Hence we derive that

Tfinal = Tff +
Tfinal

μe
F , (6)

which we rewrite as

(1−WASTE)Tfinal = Tbase,

with WASTE = 1−
(
1− F

μe

)(
1− C

T

)
. (7)

The waste is the fraction of time where nodes do not perform

useful computations. Minimizing execution time is equivalent

to minimizing the waste. In Equation (7), we identify the two

sources of overhead: (i) the term WASTEff = C
T , which is

the waste due to checkpointing in a fault-free execution, by

construction of the algorithm; and (ii) the term WASTEfail =
F
μe

, which is the waste due to errors striking during execution.

With these notations, we have

WASTE = WASTEfail + WASTEff −WASTEfailWASTEff. (8)

There remains to determine the (expected) value of F . Assum-

ing at most one error per period, we lose F = T
2 +μd+D+R

per error: T
2 for the average work lost before the error occurs,

μd for detecting the error, and D+R for downtime and recov-

ery. Note that the assumption is valid only if μd+D+R� μe

and T � μe. Plugging back this value into Equation (8), we

obtain

WASTE(T) =
T

2μe
+

C(1− D+R+μd

μe
)

T
+

D +R+ μd − C
2

μe
(9)

which is minimal for

Topt =
√
2C(μe −D −R− μd) ≈

√
2Cμe. (10)

We point out that this approach based on the waste leads to

a different approximation formula for the optimal period, but

Topt =
√
2C(μe −D −R− μd) ≈

√
2Cμe ≈

√
2Cμe + C

up to second-order terms, when μe is large in front of the

other parameters, including μd. For example, this approach

does not allow us to handle the case μd = μe; in such a case,

the optimal period is known only for Exponential distributions,

and is independent of μd, as proven by Proposition 2.

1313131313

To summarize, the exact value of the optimal period is

only known for Exponential distributions and is provided by

Proposition 2, while Young’s formula can be used as a first-

order approximation for any other distributions. Indeed, the

optimal period is a trade-off between the overhead due to

checkpointing (CT) and the expected time lost per error (T
2μe

plus some constant). Up to second-order terms, the waste is

minimum when both factors are equal, which leads to Young’s

formula, and which remains valid regardless of error detection

latencies.

B. Saving only k checkpoints

Lu, Zheng and Chien [3] propose a set of simulations to

assess the overhead induced when keeping only the last k
checkpoints (because of storage limitations). In the following,

we derive an analytical approach to numerically solve the

problem. The main difficulty is that when error detection

latency is too large, it is impossible to recover from a valid

checkpoint, and one must resume the execution from scratch.

We consider this scenario as an irrecoverable failure, and

we aim at guaranteeing that the risk of irrecoverable failure

remains under a user-given threshold.

Assume that a job of total size W is partitioned into n
chunks. What is the risk of irrecoverable failure during the

execution of one chunk of size W
n followed by its checkpoint?

Let T = W
n + C be the length of the period. Intuitively, the

longer the period, the smaller the probability that an error that

has just been detected took place more than k periods ago,

thereby leading to an irrecoverable failure because the last

valid checkpoint is not one of the k most recent ones.

Formally, there is an irrecoverable failure if: (i) there is an

error detected during the period (probability Pfail), and (ii) the

sum of Tlost, the time elapsed since the last checkpoint, and of

Xd, the error detection latency, exceeds kT (probability Plat).

The value of Pfail = P(Xe ≤ T) is easy to compute from

the error distribution law. For instance with an Exponential

law, Pfail = 1 − e−λeT . As for Plat, we use an upper bound:

Plat = P(Tlost +Xd ≥ kT) ≤ P(T +Xd ≥ kT) = P(Xd ≥
(k − 1)T). The latter value is easy to compute from the

error distribution law. For instance with an Exponential law,

Plat = e−λd(k−1)T . Of course, if there is an error and the error

detection latency does not exceed kT (probability (1-Plat)), we

have to restart execution and face the same risk as before.

Therefore, the probability of irrecoverable failure Pirrec can

be recursively evaluated as Pirrec = Pfail(Plat +(1−Plat)Pirrec),
hence Pirrec =

PfailPlat

1−Pfail(1−Plat)
. Now that we have computed Pirrec,

the probability of irrecoverable failure for a single chunk,

we can compute the probability of irrecoverable failure for

n chunks as Prisk = 1 − (1 − Pirrec)
n. In full rigor, these

expressions for Pirrec and Prisk are valid only for Exponential

distributions, because of the memoryless property, but they are

a good approximation for arbitrary laws. Given a prescribed

risk threshold ε, solving numerically the equation Prisk ≤ ε
leads to a lower bound Tmin on T . Let Topt be the optimal

period given in Theorem 3 for an unbounded number of

saved checkpoints. The best strategy is then to use the period

max(Tmin, Topt) to minimize the waste while enforcing a risk

below threshold.
In case of irrecoverable failure, we have to resume execution

from the very beginning. The number of re-executions due to

consecutive irrecoverable failures follows a geometric law of

parameter 1−Prisk, so that the expected number of executions

until success is 1
1−Prisk

. We refer to Section IV-A for an

example of how to instantiate this model to compute the best

period with a fixed number of checkpoints, under a prescribed

risk threshold.

III. COUPLING VERIFICATION AND CHECKPOINTING

In this section, we move to a more realistic model where

silent errors are detected only when some verification mecha-

nism (checksum, error correcting code, coherence tests, etc.)

is executed. Our approach is agnostic of the nature of this

verification mechanism. We aim at solving the following

optimization problem: given the cost of checkpointing C,

downtime D, recovery R, and verification V , what is the

optimal strategy to minimize the expected waste as a function

of the mean time between errors μe? Depending upon the

relative costs of checkpointing and verifying, we may have

more checkpoints than verifications, or the other way round.

In both cases, we target a periodic pattern that repeats over

time.
Consider first the scenario where the cost of a checkpoint

is smaller than the cost of a verification: then the periodic

pattern will include k checkpoints and 1 verification, where

k is some parameter to determine. Figure 2(a) provides an

illustration with k = 5. We assume that the verification is

directly followed by the last checkpoint in the pattern, so as to

save results just after they have been verified (and before they

get corrupted). In this scenario, the objective is to determine

the value of k that leads to the minimum platform waste. This

problem is addressed in Section III-A.
Because our approach is agnostic of the cost of the ver-

ification, we also envision scenarios where the cost of a

checkpoint is higher than the cost of a verification. In such

a framework, the periodic pattern will include k verifications

and 1 checkpoint, where k is some parameter to determine. See

Figure 2(b) for an illustration with k = 5. Again, the objective

is to determine the value of k that leads to the minimum

platform waste. This problem is addressed in Section III-B.
We point out that combining verification and checkpointing

guarantees that no irrecoverable failure will kill the appli-

cation: the last checkpoint of any period pattern is always

correct, because a verification always takes place right before

this checkpoint is taken. If that verification reveals an error, we

roll back until reaching a correct verification point, maybe up

to the end of the previous pattern, but never further back, and

re-execute the work. The amount of roll-back and re-execution

depends upon the shape of the pattern, and we show how to

compute it in Sections III-A and III-B below.

A. With k checkpoints and 1 verification
We use the same approach as in the proof of Proposition 4

and compute a first-order approximation of the waste (see

1414141414

Timew w w w w

V C C C C C V C

(a) 5 checkpoints for 1 verification

Timew w w w w

V C V V V V V C

(b) 5 verifications for 1 checkpoint

Figure 2: Periodic pattern.

Equations (7) and (8)). We compute the two sources of

overhead: (i) WASTEff, the waste incurred in a fault-free

execution, by construction of the algorithm, and (ii) WASTEfail,

the waste due to errors striking during execution.

Let S = kw+kC+V be the length of the periodic pattern.

We easily derive that WASTEff =
kC+V

S
. As for WASTEfail, we

still have WASTEfail =
D+E(Tlost)

μe
. However, in this context,

the time lost because of the error depends upon the location of

this error within the periodic pattern, so we compute averaged

values as follows. Recall (see Figure 2(a)) that checkpoint k is

the one preceded by a verification. Here is the analysis when

an error is detected during the verification that takes place in

the pattern:

• If the error took place in the (last) segment k: we recover

from checkpoint k−1, and verify it; we get a correct result

because the error took place later on. Then we re-execute

the last piece of work and redo the verification. The time

that has been lost is Tlost(k) = R + V + w + V . (We

assume that there is at most one error per pattern.)

• If the error took place in segment i, 2 ≤ i ≤ k − 1:

we recover from checkpoint k− 1, verify it, get a wrong

result; we iterate, going back up to checkpoint i−1, verify

it, and get a correct result because the error took place

later on. Then we re-execute k− i+1 pieces of work and

k− i checkpoints, together with the last verification. We

get Tlost(i) = (k − i+ 1)(R+ V +w) + (k − i)C + V .

• If the error took place in (first) segment 1: this is almost

the same as above, except that the first recovery at the

beginning of the pattern need not be verified, because

the verification was made just before the corresponding

checkpoint at the end of the previous pattern. We have the

same formula with i = 1 but with one fewer verification:

Tlost(1) = k(R+ w) + (k − 1)(C + V) + V .

Therefore, the formula for WASTEfail writes

WASTEfail =
D + 1

k

∑k
i=1 Tlost(i)

μe
, (11)

and (after some manipulation using a computer algebra sys-

tem) the formula simplifies to

WASTEfail =
1

2kμe
((R+V)k2+(2D+R+2V+S−2C)k+S−3V)

(12)

Using WASTEff =
kC+V

S
and Equation (8), we compute the

total waste and derive that WASTE = aS+ b+ c
S

, where a, b,
and c are some constants. The optimal value of S is Sopt =√

c
a , provided that this value is at least kC+V . We point out

that this formula only is a first-order approximation. We have

assumed a single error per pattern. We have also assumed that

errors did not occur during checkpoints following verifications.

Now, once we have found WASTE(Sopt), the value of the waste

obtained for the optimal period Sopt, we can minimize this

quantity as a function of k, and numerically derive the optimal

value kopt that provides the best value (and hence the best

platform usage).
Due to lack of space, computational details are available

in [6], which is a Maple sheet that we have to instantiate

the model. This Maple sheet is publicly available for users

to experiment with their own parameters. We provide two

example scenarios to illustrate the model in Section IV-C.
Finally, note that in order to minimize the waste, one could

do a binary search in order to find the last checkpoint before

the fault. Then we can upper-bound Tlost(i) by (k− i+1)w+
log(k)(R + V) + (k − i)C + V , and Equation (12) becomes

WASTEfail =
1

2kμe
((R+ V)2k log(k) + (2D+R+ 2V + S−

2C)k + S− 3V).

B. With k verifications and 1 checkpoint
We use a similar line of reasoning for this scenario and

compute a first-order approximation of the waste for the case

with k verifications and 1 checkpoint per pattern. The length

of the periodic pattern is now S = kw + kV + C. As before,

for 1 ≤ i ≤ k, let segment i denote the period of work before

verification i, and assume (see Figure 2(b)) that verification k
is preceded by a checkpoint. The analysis is somewhat simpler

here.
If an error takes place in segment i, 1 ≤ i ≤ k, we

detect the error during verification i, we recover from the last

checkpoint, and redo the first i segments and verifications:

therefore Tlost(i) = R+ i(V +w). The formula for WASTEfail

is the same as in Equation (11) and (after some manipulation)

we derive

WASTEfail =
1

2μe

(
D +R+

k + 1

2k
(S− C)

)
. (13)

Using WASTEff = kV+C
S

and Equation (8), we proceed just

as in Section III-A to compute the optimal value Sopt of

1515151515

the periodic pattern, and then the optimal value kopt that

minimizes the waste. Details are available within the Maple

sheet [6].

IV. EVALUATION

This section provides some examples for instantiating the

various models. We aimed at choosing realistic parameters in

the context of future exascale platforms, but we had to restrict

to a limited set of scenarios, which do not intend to cover the

whole spectrum of possible parameters. The Maple sheet [6]

is available to explore other scenarios.

A. Best period with k checkpoints under a given risk threshold

We first evaluate Prisk, the risk of irrecoverable failure,

as defined in Section II-B. Figures 3 and 4 present, for

different scenarios, the probability Prisk as a function of the

checkpointing period T on the left. On the right, the figures

present the corresponding waste with k checkpoints and in the

absence of irrecoverable failures. This waste can be computed

following the same reasoning as in Equation (9). For each

figure, the left diagram represents the risk implied by a given

period T , showing the value Topt of the optimal checkpoint

interval (optimal with respect to waste minimization and in

the absence of irrecoverable failures, see Equation (10)) as a

blue vertical line. The right diagram on the figure represents

the corresponding waste, highlighting the trade-off between

an increased irrecoverable-failure-free waste and a reduced

risk. As stated in Section II-B, it does not make sense to

select a value for T lower than Topt, since the waste would be

increased, for an increased risk.

Figure 3 considers a machine consisting of 105 components,

and a component MTBF of 100 years. This component MTBF

corresponds to the optimistic assumption on the reliability of

computers made in the literature [7], [1]. The platform MTBF

μe is thus 100× 365× 24/100, 000 ≈ 8.76 hours. The times

to checkpoint and recover (10 min) correspond to reasonable

mean values for systems at this size [8], [9]. At this scale,

process rejuvenation is small, and we set the downtime to 0s.

For these average values to have a meaning, we consider a

run that is long enough (10 days of work), and in order to

illustrate the trade-off, we take a rather low (but reasonable)

value k = 3 of intervals, and a mean time error detection μd

significantly smaller (30 times) than the MTBF μe itself.

With these parameters, Topt is around 100 minutes, and the

risk of irrecoverable failure at this checkpoint interval can be

evaluated at 1/2617 ≈ 38 · 10−5, inducing an irrecoverable-

failure-free waste of 23.45%. To reduce the risk to 10−4,

a Tmin of 8000 seconds is sufficient, increasing the waste

by only 0.6%. In this case, the benefit of fixing the period

to max(Topt, Tmin) is obvious. Naturally, keeping a bigger

amount of checkpoints (increasing k) would also reduce the

risk, at constant waste, if memory can be afforded.

We also consider in Figure 4 a more optimistic scenario

where the checkpointing technology and availability of re-

sources is increased by a factor 10: the time to checkpoint,

recover, and allocate new computing resources is divided by

Figure 3: Risk of irrecoverable failure as a function of the

checkpointing period, and corresponding waste. (k = 3, λe =
105

100y
, λd = 30λe, w = 10d, C = R = 600s, and D = 0s.)

10 compared to the previous scenario. Other parameters are

kept similar. One can observe that Topt is largely reduced

(down to less than 35 minutes between checkpoints), as well

as the optimal irrecoverable-failure-free waste (9.55%). This

is unsurprising, and mostly due to the reduction of failure-

free waste implied by the reduction of checkpointing time.

But because the period between checkpoints becomes smaller,

while the latency to detect an error is unchanged (μd is still

30 times smaller than μe), the risk that an error happens at the

interval i but is detected after interval i+k is increased. Thus,

the risk climbs to 1/2, an unacceptable value. To reduce the

risk to 10−4 as previously, it becomes necessary to consider a

Tmin of 6650 seconds, which implies an irrecoverable-failure-

free waste of 15%, significantly higher than the optimal one,

which is below 10%, but still much lower than the 24% when

checkpoint and availability costs are 10 times higher.

B. Periodic pattern with k verifications and 1 checkpoint

We now focus on the waste induced by the different ways

of coupling periodic verification and checkpointing. We first

consider the case of a periodic pattern with more verifications

than checkpoints: every k verifications of the current state of

1616161616

Figure 4: Risk of irrecoverable failure as a function of the

checkpointing period, and corresponding waste. (k = 3, λe =
105

100y
, λd = 30λe, w = 10d, C = R = 60s, and D = 0s.)

the application, a checkpoint is taken. The duration of the work

interval S, between two verifications in this case, is optimized

to minimize the waste. We consider two scenarios. For each

scenario, we represent two diagrams: the left diagram shows

the waste as a function of k for a given verification cost V ,

and the right diagram shows the waste as a function of k and

V using a 3D surface representation.

In the first scenario, we consider the same setup as above in

Section IV-A. The waste is computed in its general form, so we

do not need to define the duration of the work. As represented

in Figure 5, for a given verification cost, the waste can be

optimized by making more than one verifications. When k >
1, there are intermediate verifications that can enable to detect

an error before a periodic pattern (of length S) is completed,

hence, that can reduce the time lost due to an error. However,

introducing too many verifications induces an overhead that

eventually dominates the waste. The 3D surface shows that

the waste reduction is significant when increasing the number

of verifications, until the optimal number is reached. Then, the

waste starts to increase again slowly. Intuitively, the lower the

cost for V , the higher the optimal value for k.

When considering the second scenario (Figure 6), with

an improved checkpointing and availability setup, the same

conclusions can be reached, with an absolute value of the

waste greatly diminished. Since forced verifications allow to

detect the occurrence of errors at a controllable rate (depending

on S and k), the risk of non-recoverable errors is nonexistent

in this case, and the waste can be greatly diminished, with

very few checkpoints taken and kept during the execution.

C. Periodic pattern with k checkpoints and 1 verification

The last set of experiments considers the opposite case

of periodic patterns: checkpoints are taken more often than

verifications. Every k checkpoints, a verification of the data

consistency is done. Intuitively, this could be useful if the

cost of verification is large compared to the cost of check-

pointing itself. In that case, when rolling back after an error is

discovered, each checkpoint that was not validated before is

validated at rollback time, potentially invalidating up to k− 1
checkpoints.

Because this pattern has potential only when the cost of

checkpoint is much lower than the cost of verification, we con-

sidered the case of a greatly improved checkpoint / availability

setup: the checkpoint and recovery times are only 6 seconds

in Figure 7. One can observe that in this extreme case, it can

still make sense to consider multiple checkpoints between two

verifications (when V = 100 seconds, a verification is done

only every 3 checkpoints optimally); however the 3D surface

demonstrates that the waste is still dominated by the cost of

the verification, and little improvement can be achieved by

taking the optimal value for k. The cost of verification must

be incurred when rolling back, and this shows on the overall

performance if the verification is costly.

This is illustrated even more clearly with Figure 8, where

the checkpoint costs and machine availability are set to the

second scenario of Sections IV-A and IV-B. As soon as the

checkpoint cost is not negligible compared to the verification

cost (only 5 times smaller in this case), it is more efficient

to validate every other checkpoint than to validate only after

k > 2 checkpoints. The 3D surface shows that this holds true

for rather large values of V .

All the rollback / recovery techniques that we have evaluated

above, using various parameters for the different costs, and

stressing the different approaches to their limits, expose a

waste that remains, in the vast majority of the cases, largely be-

low 66%. This is noticeable, because the traditional hardware

based technique, which relies on triple modular redundancy

and voting [10], mechanically presents a waste that is at

least equal to 66% (two-thirds of resources are wasted, and

neglecting the cost of voting).

V. RELATED WORK

As already mentioned, this work is motivated by the recent

paper by Lu, Zheng and Chien [3], who introduce a multiple
checkpointing model to compute the optimal checkpointing pe-

riod with error detection latency. We start with a brief overview

1717171717

Figure 5: Case with k verifications, and one checkpoint per periodic pattern. Waste as function of k, and potentially of V ,
using the optimal period. (V = 20s, C = R = 600s,D = 0s, and μ = 10y

105
.)

Figure 6: Case with k verifications, and one checkpoint per periodic pattern. Waste as function of k, and potentially of V ,
using the optimal period. (V = 2s, C = R = 60s,D = 0s, and μ = 10y

105
.)

Figure 7: Case with k checkpoints, and one verification per periodic pattern. Waste as function of k, and potentially of V ,
using the optimal period. (V = 100s, C = R = 6s,D = 0s, and μ = 10y

105
.)

1818181818

Figure 8: Case with k checkpoints, and one verification per periodic pattern. Waste as function of k, and potentially of V ,
using the optimal period. (V = 300s, C = R = 60s,D = 0s, and μ = 10y

105
.)

of traditional checkpointing approaches before discussing error

detection and recovery mechanisms.

A. Checkpointing

Traditional (coordinated) checkpointing has been studied for

many years. The major appeal of the coordinated approach is

its simplicity, because a parallel job using n processors of

individual MTBF Mind can be viewed as a single processor

job with MTBF μ = Mind

n . Given the value of μ, an

approximation of the optimal checkpointing period can be

computed as a function of the key parameters (downtime D,

checkpoint time C, and recovery time R). The first estimate

had been given by Young [4] and later refined by Daly [5].

Both use a first-order approximation for Exponential failure

distributions; their derivation is similar to the approach in

Equations (6) and (7). More accurate formulas for Weibull

failure distributions are provided in [11], [12], [13]. The

optimal checkpointing period is known only for Exponential

failure distributions [8]. Dynamic programming heuristics for

arbitrary distributions are proposed in [14], [15], [8].

The literature proposes different works [16], [17], [18], [19],

[20] on the modeling of coordinated checkpointing protocols.

In particular, [17] and [16] focus on the usage of available

resources: some may be kept as backup in order to replace

the down ones, and others may be even shutdown in order to

decrease the failure risk or to prevent storage consumption by

saving fewer checkpoint snapshots.

The major drawback of coordinated checkpointing protocols

is their lack of scalability at extreme-scale. These protocols

will lead to I/O congestion when too many processes are

checkpointing at the same time. Even worse, transferring the

whole memory footprint of an HPC application onto stable

storage may well take so much time that a failure is likely to

take place during the transfer! A few papers [20], [21] propose

a scalability study to assess the impact of a small MTBF (i.e.,

of a large number of processors). The mere conclusion is that

checkpoint time should be dramatically reduced for platform

waste to become acceptable, which motivated the instantiation

of optimistic scenarios in Section IV.

All the above approaches maintain a single checkpoint. If

the checkpoint file includes errors, the application faces an

irrecoverable failure and must restart from scratch. This is be-

cause error detection latency is ignored in traditional rollback

and recovery schemes. These schemes assume instantaneous

error detection (therefore mainly targeting fail-stop failures)

and are unable to accommodate silent errors.

B. Error detection

Considerable efforts have been directed at error-checking

to reveal latent errors. Most techniques combine redundancy

at various levels, together with a variety of verification

mechanisms. The oldest and most drastic approach is at

the hardware level, where all computations are executed in

triplicate, and majority voting is enforced in case of different

results [10]. Error detection approaches include memory scrub-

bing [22], fault-tolerant algorithms [23], [24], [25], ABFT

techniques [26], [27] and critical MPI message validation [28].

We refer to Lu, Zheng and Chien [3] for a comprehensive

list of techniques and references. As already mentioned, our

work is agnostic of the underlying error-detection technique

and takes the cost of verification as an input parameter to the

model (see Section III).

VI. CONCLUSION

In this paper, we revisit traditional checkpointing and roll-

back recovery strategies. Rather than considering fail-stop

failures, we focus on silent data corruption errors. Such latent

errors cannot be neglected anymore in High Performance

Computing, in particular in sensitive and high precision simu-

lations. The core difference with fail-stop failures is that error

detection is not immediate.

We discuss and analyze two models. In the first model,

errors are detected after some delay following a probability

distribution (typically, an Exponential distribution). We com-

pute the optimal checkpointing period in order to minimize the

waste when all checkpoints can be kept in memory, and we

1919191919

show that this period does not depend on the distribution of

detection times. In practice, only a few checkpoints can be kept

in memory, and hence it may happen that an error was detected

after the last correct checkpoint was removed from storage. We

derive a minimum value of the period to guarantee, within a

risk threshold, that at least one valid checkpoint remains when

a latent error is detected.
A more realistic model assumes that errors are detected

through some verification mechanism. Periodically, one checks

whether the current status is meaningful or not, and then

eventually detects a latent error. We discuss both the case

where the periodic pattern includes k checkpoints for one

verification (large cost of verification), and the opposite case

with k verifications for one checkpoint (inexpensive cost for

verification). We express a formula for the waste in both cases,

and, from these formulas, we derive the optimal period.
The various models are instantiated with realistic parame-

ters, and the evaluation results clearly corroborate the theo-

retical analysis. For the first model, with detection times, the

tradeoff between waste and risk of irrecoverable error clearly

appears, hence showing that a period larger than the one

minimizing the irrecoverable-failure-free waste should often

be chosen to achieve an acceptable risk. The advantage of

the second model is that there are no irrecoverable failures

(within each period, there is a verification followed by a

checkpoint, hence ensuring a valid checkpoint). We compute

the optimal pattern of checkpoints and verifications per period,

as a function of their respective cost, to minimize the waste.

The pattern with more checkpoints than verification turns out

to be usable only when the cost of checkpoint is much lower

than the cost of verification, and the conclusion is that it is

often more efficient to verify the result every other checkpoint.
Overall, we provide a thorough analysis of checkpointing

models for latent errors, both analyzing the models analyti-

cally, and evaluating them through different scenarios. A future

research direction would be to study more general scenarios

of multiple checkpointing, for instance by keeping not the

consecutive k last checkpoints in the first model, but rather

some older checkpoints to decrease the risk. In the second

model, more verification/checkpoint combinations could be

studied, while we focused on cases with an integer number

of checkpoints per verification (or the converse).

Acknowledgments. This work was supported in part by the

ANR RESCUE project. A. Benoit and Y. Robert are with the

Institut Universitaire de France.

REFERENCES

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen, and M. Valero, “The
international exascale software project: a call to cooperative action by the
global high-performance community,” Int. Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 309–322, 2009.

[2] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Proc. of the ACM/IEEE SC Conf., 2010, pp. 1–11.

[3] G. Lu, Z. Zheng, and A. A. Chien, “When is multi-version check-
pointing needed,” in 3rd Workshop for Fault-tolerance at Extreme Scale
(FTXS). ACM Press, 2013, https://sites.google.com/site/uchicagolssg/
lssg/research/gvr.

[4] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

[5] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[6] “Maple sheets for the experiments,” http://graal.ens-lyon.fr/∼yrobert/
error-detection/.

[7] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward Exascale Resilience,” Int. Journal of High Performance Computing
Applications, vol. 23, no. 4, pp. 374–388, 2009.

[8] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Check-
pointing strategies for parallel jobs,” in Proc. of the ACM/IEEE SC Conf.,
2011.

[9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the Viability of Process Replication Reliability for Exascale Systems,”
in Proc. of the ACM/IEEE SC Conf., 2011.

[10] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM J. Res. Dev., vol. 6, no. 2, pp.
200–209, 1962.

[11] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Trans. on computers, pp. 699–708, 2001.

[12] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-free check-
point placement algorithms based on min-max principle,” IEEE TDSC,
pp. 130–140, 2006.

[13] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent, “A
flexible checkpoint/restart model in distributed systems,” in PPAM,
ser. LNCS, vol. 6067, 2010, pp. 206–215. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14390-8 22

[14] S. Toueg and O. Babaoglu, “On the optimum checkpoint selection
problem,” SIAM J. Computing, vol. 13, no. 3, pp. 630–649, 1984.

[15] M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity Analysis
of Checkpoint Scheduling with Variable Costs,” IEEE Transactions on
Computers, vol. 99, no. PrePrints, 2012.

[16] J. S. Plank and M. G. Thomason, “Processor allocation and checkpoint
interval selection in cluster computing systems,” J. of Parallel and
Distributed Computing, vol. 61, p. 1590, 2001.

[17] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC Fault-Tolerant
Environment: An Analytical Approach,” in Parallel Processing (ICPP),
2010, 2010, pp. 525–534.

[18] L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick, and
A. Wood, “Modeling Coordinated Checkpointing for Large-Scale Su-
percomputers,” in Proc. of ICDSN, 2005, pp. 812–821.

[19] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen,
and P. Roth, “Modeling the impact of checkpoints on next-generation
systems,” in Proc. of IEEE MSST, 2007, pp. 30–46.

[20] Z. Zheng and Z. Lan, “Reliability-aware scalability models for high
performance computing,” in Proc. of IEEE Cluster, 2009.

[21] F. Cappello, H. Casanova, and Y. Robert, “Preventive migration vs.
preventive checkpointing for extreme scale supercomputers,” Parallel
Processing Letters, vol. 21, no. 2, pp. 111–132, 2011.

[22] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implications
for system design,” SIGARCH Comput. Archit. News, vol. 40, no. 1, pp.
111–122, 2012.

[23] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of iterative
linear algebra methods,” in Proc. 22nd Int. Conf. on Supercomputing,
ser. ICS ’08. ACM, 2008, pp. 155–164.

[24] M. Heroux and M. Hoemmen, “Fault-tolerant iterative methods via
selective reliability,” Sandia National Laboratories, Research report
SAND2011-3915 C, 2011.

[25] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing
the impact of soft errors on iterative methods in scientific computing,”
in Proc. 25th Int. Conf. on Supercomputing, ser. ICS ’11. ACM, 2011,
pp. 152–161.

[26] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528,
1984.

[27] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based
fault tolerance applied to high performance computing,” J. Parallel and
Distributed Computing, vol. 69, no. 4, pp. 410 –416, 2009.

[28] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in Proc. of the ACM/IEEE
SC Int. Conf., 2012.

2020202020

